Linear mappings preserving the copositive cone

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irreducible elements of the copositive cone

An element A of the n× n copositive cone C is called irreducible with respect to the nonnegative cone N if it cannot be written as a nontrivial sum A = C + N of a copositive matrix C and an elementwise nonnegative matrix N . This property was studied by Baumert [2] who gave a characterisation of irreducible matrices. We demonstrate here that Baumert’s characterisation is incorrect and give a co...

متن کامل

Conformal mappings preserving the Einstein tensor of Weyl manifolds

In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...

متن کامل

On Invertibility Preserving Linear Mappings, Simultaneous Triangularization and Property L

1. Introduction. The investigation leading to this publication was motivated by a desire to try to understand the structure of a linear unital mapping ϕ from a unital algebra A of matrices contained in M h (C) into M n (C) which has the property that an invertible element in A is mapped into an invertible in M n (C). The interest in this question was raised by some earlier results on a linear i...

متن کامل

- Inner Product Preserving Mappings

A mapping f : M → N between Hilbert C∗-modules approximately preserves the inner product if ‖〈f(x), f(y)〉 − 〈x, y〉‖ ≤ φ(x, y), for an appropriate control function φ(x, y) and all x, y ∈ M. In this paper, we extend some results concerning the stability of the orthogonality equation to the framework of Hilbert C∗modules on more general restricted domains. In particular, we investigate some asympt...

متن کامل

Unit-circle-preserving mappings

If f is an isometry, then every distance r > 0 is conserved by f , and vice versa. We can now raise a question whether each mapping that preserves certain distances is an isometry. Indeed, Aleksandrov [1] had raised a question whether a mapping f : X → X preserving a distance r > 0 is an isometry, which is now known to us as the Aleksandrov problem. Without loss of generality, we may assume r =...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2021

ISSN: 0002-9939,1088-6826

DOI: 10.1090/proc/15432